蜜桃精品一区二区三区视频,无码制服丝袜中文字幕,亚洲经典在线中文字幕,欧美成人一级,日本亚洲成人中文字幕,大桥未久亚洲无av码在线,精品久久久久久久无码人妻热,业余 自由 性别 成熟偷窥

芬蘭Kibron專注表面張力儀測量技術,快速精準測量動靜態表面張力

熱線:021-66110810,66110819,66110690,13564362870 Email: info@vizai.cn

合作客戶/

拜耳公司.jpg

拜耳公司

同濟大學

同濟大學

聯合大學.jpg

聯合大學

寶潔公司

美國保潔

強生=

美國強生

瑞士羅氏

瑞士羅氏

當前位置首頁 > 新聞中心

合成脂質體類姜黃素納米粒子的自組裝——結論、致謝!

來源:上海謂載 瀏覽 1706 次 發布時間:2021-11-18

四、結論


核-殼納米顆粒(或粘土結構)的穩定自組裝形成,姜黃素位于核中,納米粘土位于電暈中。粒子的典型尺寸為150 nm,表面帶負電(zeta電位~25 mV)。通過zeta電位(如圖3所示)、自組裝系統的能量(如圖5(B)和6(B)所示)、20天內的恒定DLS計數率(如ESI?中的圖S3所示),確認顆粒(由0.05%納米粘土形成)的穩定性,以及20天后拍攝的SEM圖像的類似粒度分布(如ESI?中的圖S4所示)。組裝證明了疏水(核)和親水(殼)粒子與軟可調界面區共存。自組裝的主要原因是姜黃素納米顆粒之間的主要吸引力和納米粘土片提供的排斥力之間的復雜平衡。疏水區和親水區之間的界面區域在形成和穩定過程中起著關鍵作用。它充分平衡了排斥屏障與姜黃素納米顆粒中普遍存在的疏水吸引力(如圖5(A)和6(A)所示),這阻止了姜黃素納米顆粒的聚集并導致粘粒組裝的形成。一些粘土顆粒的自組裝被發現對納米粘土團的大小很敏感,因為它調節了系統中的排斥力。對于這些結構的穩定形成,存在一個臨界閾值大小的納米粘土團簇(L<80nm和s<100nm)。隨著粘土顆粒自組裝電位的增大,一些粘土顆粒的自組裝電位降低。簡言之,我們最終證明,即使在沒有任何表面活性劑的情況下,當相互作用力被調整以引起微妙的平衡時,在無機粘土血小板存在的情況下也可以形成脂質體樣結構或穩定的姜黃素納米粒。所形成的粘粒結構在生物物理學領域可能有不同的應用。粘土小體組件預計對系統的pH值敏感,因此它可能適用于將裝載在堆芯中的貨物運送到目標位置。

圖6足跡直徑對粘粒組件的影響。(A) 作為界面區域厚度函數的能量變化(L?60 nm,T?298 K,f?0.5,姜黃素納米顆粒半徑R?50 nm,疏水衰減長度x0?1 nm,界面張力?40 mN m-1)。(B) 粘粒–粘粒相互作用作為粒間分離D的函數,使用方程(5)計算。對于更大的封裝外形直徑,能量最小值變得更深,對于大于100 nm的s,能量最小值變得更有吸引力。


致謝


這項工作得到了尼赫魯大學授予NP的訪客獎學金的支持。NP和KR承認印度政府科學技術部的激勵教員獎。我們感謝Akanksha Sharma博士在該大學高級研究儀器設備的SEM測量方面提供的幫助。NP感謝Matthias Weiss教授的實驗室設施和有用的討論。


參考


1 Y. Gao, C. Berciu, Y. Kuang, J. Shi, D. Nicastro and B. Xu, ACS Nano, 2013, 7, 9055–9063.


2 G. Helgesen, E. Svasand and A. T. Skjeltorp, J. Phys.: Condens. Matter, 2008, 20, 204127, DOI: 10.1088/0953-8984/20/20/ 204127.


3 M. Grzelczak, J. Vermant, E. M. Furst and L. M. Liz-Mirzan, ACS Nano, 2010, 4, 3591–3605.


4 A. K. Boal, F. Ilhan, J. E. DeRouchey, T. Thurn-Albrecht, T. P. Russell and V. M. Rotello, Nature, 2000, 404, 746–748.


5 Y. Xia, T. D. Nguyen, M. Yang, B. Lee, A. Santos, P. Podsiadlo, Z. Tang, S. C. Glotzer and N. A. Kotov, Nat. Nanotechnol., 2011, 6, 580–587.


6 G. M. Whitesides and B. Grzybowski, Science, 2002, 295, 2418.


7 E. E. Meyer, K. J. Rosenberg and J. Israelachvili, PNAS, 2006, 103, 15739–15746.


8 N. I. Lebovka, Adv. Polym. Sci., 2014, 255, 57–96.


9 A. S. Iglesias, M. Grzelczak, T. Altantzis, B. Goris, J. PerezJuste, S. Bals, G. V. Tendeloo, G. V. Stephan, H. Donaldson Jr, B. F. Chmelka, J. N. Israelachvili and L. M. Liz-Marzan, ACS Nano, 2012, 12, 11059–11065.


10 A. Laouini, C. Jaafar-Maalej, I. Limayem-Blouza, S. Sfar, C. Charcosset and H. Fessi, J. Colloid Sci. Biotechnol., 2012, 1, 147–168.


11 T. M. Allena and P. R. Cullis, Adv. Drug Delivery Rev., 2013, 65, 36–48.


12 M. J. Ostro and P. R. Cullis, Am. J. Hosp. Pharm., 1989, 46, 1576–1587.


13 A. Samad, Y. Sultana and M. Aqil, Curr. Drug Delivery, 2007, 4, 297–305.


14 P. da Silva Malheiros, D. J. Daroit and A. Brandelli, Trends Food Sci. Technol., 2010, 21, 284–292.


15 Z. Nie, A. Petukhova and E. Kumacheva, Nat. Nanotechnol., 2010, 5, 15–25.


16 E. Busseron, Y. Ruff, E. Moulin and N. Giuseppone, Nanoscale, 2013, 5, 7098–7140.


17 M. Rad-Malekshahi, L. Lempsink, M. Amidi, W. E. Hennink and E. Mastrobattista, Bioconjugate Chem., 2016, 27, 3–18.


18 R. M. Gorgoll, T. Tsubota, K. Harano and E. Nakamura, J. Am. Chem. Soc., 2015, 137, 7568–7571.


19 W. Lewandowski, M. Fruhnert, J. Mieczkowski, C. Rockstuhl and E. G′orecka, Nat. Commun., 2015, DOI: 10.1038/ ncomms7590.


20 M. M. Yallapu, M. Jaggi and S. C. Chauhan, Curr. Pharm. Des., 2013, 19, 1994–2010.


21 Y. Manolova, V. Deneva, L. Antonov, E. Drakalska, D. Momekova and N. Lambov, Spectrochim. Acta, Part A, 2014, 132, 815–820.


22 P. Anand, A. B. Kunnumakkara, R. A. Newman and B. B. Aggarwal, Mol. Pharm., 2007, 4, 807.


23 H. Hatcher, R. Planalp, J. Cho, F. M. Torti and S. V. Torti, Cell. Mol. Life Sci., 2008, 65, 1631.


24 Y. Zhang, C. Yang, W. Wang, J. Liu, Q. Liu, F. Huang, L. Chu, H. Gao, C. Li, D. Kong, Q. Liu and J. Liu, Sci. Rep., 2016, 6, 1– 12.


25 X. Yang, Z. Li, N. Wang, L. Li, L. Song, T. He, L. Sun, Z. Wang, Q. Wu, N. Luo, C. Yi and C. Gong, Sci. Rep., 2015, 5, 1–15.


26 D. Wang, S. M. Veena, K. Stevenson, C. Tang, B. Ho, J. D. Suh, V. M. Duarte, K. F. Faull, K. Mehta, E. S. Srivastan and M. B. Wang, Clin. Cancer Res., 2008, 14, 6228–6236.


27 V. Gupta, A. Aseh, C. N. Rios, B. B. Aggarwal and A. B. Mathur, Int. J. Nanomed., 2009, 4, 115–122.


28 R. K. Das, N. Kasoju and U. Bora, Nanomedicine, 2010, 6, 153– 160.


29 S. Bisht, G. Feldmann, S. Soni, R. Ravi, C. Karikar, A. Maitra and A. Maitra, J. Nanobiotechnol., 2007, 5, 3–21.


30 Y. He, Y. Huang and Y. Cheng, Cryst. Growth Des., 2010, 3, 1021–1024.


31 Bhawana, R. K. Basniwal, H. S. Buttar, V. K. Jain and N. Jain, J. Agric. Food Chem., 2011, 59, 2056–2061.


32 N. Pawar and H. B. Bohidar, Colloids Surf., A, 2009, 333, 120– 125.


33 B. Ruzicka, E. Zaccarelli, L. Zulian, R. Angelini, M. Sztucki, A. Moussaid, T. Narayanan and F. Sciortino, Nat. Mater., 2011, 10, 56–60.


34 R. K. Pujala, Dispersion Stability, Microstructure and Phase Transition of Anisotropic Nanodiscs, Springer Thesis, 2014, DOI: 10.1007/978-3-319-04555-9.


35 A. Faghihne jad and H. Zeng, Langmuir, 2013, 29, 12443– 12451.

合成脂質體類姜黃素納米粒子的自組裝——摘要、介紹

合成脂質體類姜黃素納米粒子的自組裝——材料和方法

合成脂質體類姜黃素納米粒子的自組裝——結果和討論

合成脂質體類姜黃素納米粒子的自組裝——結論、致謝!

主站蜘蛛池模板: 亚洲国产成人无码电影| 午夜成人性爽爽免费视频| 美女mm131午夜福利在线| 久久久国产成人一区二区| 国产精品普通话国语对白露脸| 国产乱妇乱子在线播视频播放网站 | 亚洲va中文字幕无码久久不卡| 国产成+人+综合+亚洲专区| 青青草国产精品亚洲| 乱人伦中文无码视频| 99蜜桃臀久久久欧美精品| 亚洲熟妇丰满大屁股熟妇| 亚洲国产日韩a在线亚洲| 欧美 日韩 亚洲 精品二区| 两个人看的www免费视频中文| 亚洲日本乱码一区二区产线一∨| 丁香婷婷激情综合俺也去| 秋霞无码久久一区二区| 强奷漂亮少妇高潮在线观看| 免费人妻无码不卡中文字幕系| 人人妻人人爽日日人人| 99热门精品一区二区三区无码| 激情五月开心综合亚洲| 国产av永久无码天堂影院| 综合自拍亚洲综合图区高清| 高清破外女出血av毛片| 久久天天躁狠狠躁夜夜躁2012| 免费无码h肉动漫在线观看| 久久无码中文字幕东京热| 亚洲国产av天码精品果冻传媒| 漂亮人妻被中出中文字幕久久 | 夜晚被公侵犯的人妻深田字幕| 午夜精品久久久久9999| 婷婷色婷婷深深爱播五月| 久久精品久久精品久久39| 欧美丰满熟妇乱xxxxx图片| 一本大道精品视频在线| 狠狠久久五月精品中文字幕| 亚洲国内精品av五月天| 极品少妇的粉嫩小泬视频| 潮喷大喷水系列无码久久精品|